A Proposed Experimental Procedure for the Vapor Pressure Osmometer to Minimize the Solute Dependence of the Calibration Constant

In two previous publications^{1,2} the operating procedure of the Hewlett-Packard Model 302 Vapor Pressure Osmometer (VPO) was critically examined. One particularly disturbing result was the demonstration of a molecular weight dependence of the calibration constant. I now propose an approximate solution to this problem.

The theoretical model² developed to explain the solute dependence of the calibration constant shows that the temperature difference (and therefore resistance difference) between the two thermistors in the VPO can be represented by

$$\Delta R = \frac{KC_0}{M_n} \left(1 + \beta'/D_0\right) + \text{ higher order terms}$$
(1)

where K is the calibration constant as determined using a low-molecular-weight standard, C_0 is the solution concentration, D_0 is the average diffusion coefficient for the sample in the solvent at a given temperature, and β' is a constant for a given instrument configuration and solvent system. D_0 can be shown³ to be approximated by

$$D_0 = \Phi'(K'_s)^{1/3} / (M)^{1/2}$$
⁽²⁾

where Φ is a universal constant, K_s the constant in the intrinsic viscosity-molecular weight relationship, and M is the molecular weight. While for a given temperature and solvent system K_s is variable for different molecular species, the variation of the cube root will be far less and consequently neglected as an approximation. Consequently, eq. (2) becomes

$$D_0 = \Phi/M^{1/2}$$
(3)

Ordinarily, for a polydisperse sample, M would be replaced by the viscosity-average molecular weight. However, the previous model shows that the diffusion of the smaller molecules produces the largest effects. Therefore, M is approximated by \overline{M}_n in eq. (3). Consequently, eq. (1) can be rewritten as

$$\Delta R = \frac{KC_0[1 + \beta(\overline{M}_n)^{1/2}]}{\overline{M}_n} + \text{ higher terms in } C_0$$
(4)

Equation (4) suggests a better calibration procedure so that the effects of the solute dependence of the calibration constant can be minimized. First, K can be determined in the usual manner using a low-molecular-weight standard by neglecting the second term in the brackets. Second, β is determined using a high-molecular-weight $(\overline{M'_n} > 20,000)$ material of known molecular weight from

$$\beta = \frac{(S'\overline{M}'_n/K) - 1}{(\overline{M}'_n)^{1/2}}$$
(5)

where K is the calibration constant determined using the low-molecular-weight standard and S', the linear coefficient determined from a polynomial regression of ΔR versus C_0 .

From a solution of eq. (4), the number-average molecular weight (\overline{M}_n) of an unknown material can be shown to be

$$\overline{M}_n = \frac{K^2}{4S^2} \left[\beta + \left(\beta^2 + \frac{4S}{K} \right)^{1/2} \right]^2 \tag{6}$$

where S is the linear coefficient in the polynomial regression of ΔR versus C_0 .

The application of the above method to polystyrene materials reported on previously¹ is given in Table I. The term β was determined by assuming $\overline{M}_n = 21,500$ to be the actual value for this sample. The data show that using a secondary standard produces dramatically better agreement with the accepted values.

For high-molecular-weight materials, the use of two calibration constants has been demonstrated to yield \overline{M}_n values that are more consistent with those obtainable using the membrane osmometer. However, it may not be clear why a high-molecular-weight standard alone cannot be used for cali-

Journal of Applied Polymer Science, Vol. 23, 633–634 (1979) © 1979 John Wiley & Sons, Inc.

Accepted \overline{M}_n^{a}	Hewlett-Packard Procedure ^b	Amoco ^c	Amocod
3525	3120	3500	3290
10,300	9480	10,400	10,400
20,000	18,850	21,500	21,500
51,000	38,000	49,000	46,000

TABLE I Molecular Weights of Standards by VPO

^a Polystyrene determined by ArRo Labs.

^b Run as suggested in Hewlett-Packard Model 302 VPO.

^c Measured so as to eliminate drop size (Ref. 1).

^d Calculated using the 21,500 sample as the high-molecular-weight standard as suggested in this publication.

bration. This can be answered in the following way: just as a calibration constant obtained with a low-molecular-weight standard gives incorrect values for \overline{M}_n when applied to high-molecular-weight polymers, a calibration constant obtained with a high-molecular-weight standard gives increasingly erroneous results as the \overline{M}_n of the unknown decreases.

References

1. B. H. Bersted, J. Appl. Polym. Sci., 17, 1415 (1973).

2. B. H. Bersted, J. Appl. Polym. Sci., 18, 2399 (1974).

3. P. J. Flory, *Principles of Polymer Chemistry*, Cornell University Press, Ithaca, N.Y., 1953, pp. 627–629.

B. H. BERSTED

Research and Development Department Amoco Chemicals Corporation Amoco Research Center Naperville, Illinois 60540

Received August 2, 1977